MARCKS phosphorylation is modulated by a peptide mimetic of MARCKS effector domain leading to increased radiation sensitivity in lung cancer cell lines

نویسندگان

  • Timothy D. Rohrbach
  • Robert B. Jones
  • Patricia H. Hicks
  • Alice N. Weaver
  • Tiffiny S. Cooper
  • Nicholas J. Eustace
  • Eddy S. Yang
  • John S. Jarboe
  • Joshua C. Anderson
  • Christopher D. Willey
چکیده

Lung cancer is the leading cause of cancer-associated mortality in the United States. Kinase hyperactivation is a known mechanism of tumorigenesis. The phosphorylation status of the plasma membrane-associated protein myristoylated alanine rich C-kinase substrate (MARCKS) effector domain (ED) was previously established as being important in the sensitivity of lung cancer to radiation. Specifically, when MARCKS ED was in a non-phosphorylated state, lung cancer cells were more susceptible to ionizing radiation and experienced prolonged double-strand DNA breaks. Additional studies demonstrated that the phosphorylation status of MARCKS ED is important for gene expression and in vivo tumor growth. The present study used a peptide mimetic of MARCKS ED as a therapeutic intervention to modulate MARCKS phosphorylation. Culturing A549, H1792 and H1975 lung cancer cell lines with the MARCKS ED peptide led to reduced levels of phosphorylated MARCKS and phosphorylated Akt serine/threonine kinase 1. Further investigation demonstrated that the peptide therapy was able to reduce lung cancer cell proliferation and increase radiation sensitivity. In addition, the MARCKS peptide therapy was able to prolong double-strand DNA breaks following ionizing radiation exposure. The results of the present study demonstrate that a peptide mimetic of MARCKS ED is able to modulate MARCKS phosphorylation, leading to an increase in sensitivity to radiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting the effector domain of the myristoylated alanine rich C-kinase substrate enhances lung cancer radiation sensitivity.

Lung cancer is the leading cause of cancer related deaths. Common molecular drivers of lung cancer are mutations in receptor tyrosine kinases (RTKs) leading to activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pro-growth, pro-survival signaling pathways. Myristoylated alanine rich C-kinase substrate (MARCKS) is a protein that has the ability to mitigate this signaling cascade by seques...

متن کامل

Elevated MARCKS phosphorylation contributes to unresponsiveness of breast cancer to paclitaxel treatment

Accumulating evidence has suggested that myristoylated alanine-rich C-kinase substrate (MARCKS) is critical for regulating multiple pathophysiological processes. However, the molecular mechanism underlying increased phosphorylation of MARCKS at Ser159/163 (phospho-MARCKS) and its functional consequence in neoplastic disease remain to be established. Herein, we investigated how phospho-MARCKS is...

متن کامل

MARCKS regulates growth and radiation sensitivity and is a novel prognostic factor for glioma.

PURPOSE This study assessed whether myristoylated alanine-rich C-kinase substrate (MARCKS) can regulate glioblastoma multiforme (GBM) growth, radiation sensitivity, and clinical outcome. EXPERIMENTAL DESIGN MARCKS protein levels were analyzed in five GBM explant cell lines and eight patient-derived xenograft tumors by immunoblot, and these levels were correlated to proliferation rates and int...

متن کامل

MARCKS Protein Is Phosphorylated and Regulates Calcium Mobilization during Human Acrosomal Exocytosis

Acrosomal exocytosis is a calcium-regulated exocytosis that can be triggered by PKC activators. The involvement of PKC in acrosomal exocytosis has not been fully elucidated, and it is unknown if MARCKS, the major substrate for PKC, participates in this exocytosis. Here, we report that MARCKS is expressed in human spermatozoa and localizes to the sperm head and the tail. Calcium- and phorbol est...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Platelet secretion induced by phorbol esters stimulation is mediated through phosphorylation of MARCKS: a MARCKS-derived peptide blocks MARCKS phosphorylation and serotonin release without affecting pleckstrin phosphorylation

Previous experiments suggest that actin disassembly, perhaps at a specific site, is required for platelet secretion. Platelet stimulation by phorbol 12-myristate 13acetate (PMA) induced pleckstrin phosphorylation, platelet aggregation, and secretion. Inhibition of protein kinase C (PKC) is accompanied by inhibition of pleckstrin phosphorylation and serotonin secretion. Here, we demonstrate the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017